G GENESYS PUMPS

Why GENESYS® Today

Our vision of making products that capture integrity — integrity that makes them precious to the customer — is a costly and difficult endeavor. After years of rigorous research and development, the proven B73lean® design of the GENESYS® 3x2-6 model is lowering total cost of ownership from basic applications to more technologically advanced facilities around the globe. The GENESYS® non-metallic, end-suction centrifugal pump line is designed and engineered to provide highly efficient pumping solutions.

The GENESYS® composite construction with no wetted metal parts gives it compatibility with many aggressive chemistries. The unique

closed-impeller and time-tested volute design render performances up to 340 GPM and 178' of shut off head. And if that isn't enough, it can produce peak performances at 76% efficiency.

GENESYS® pumps are among the first to demonstrate a strong yet simple economic reason to start switching to BMC thermosets: Compared to metallic materials of construction, thermosets are about half the cost. BMC offers low shrink and low warp; it molds to net dimensions and holds tight tolerances. BMC also adds a "marketing-oriented" advantage in the ability to color the material for a wide variety of end-user functionality.

What is B73lean® and why is it better?

B73lean® THE PUMP PAYS FOR ITSELF!

For many applications, full compliance with the B73.1 standard can be a burden simply because you must pay for features you don't need. But, there is a more efficient alternative!

The B73lean® philosophy considers it far more important to emphasize process performance and energy efficiency then compliance with some of the dimension specifications in the full B73.1 spec.

B73lean® IS EASIER TO MAINTAIN

Its interchangeable design fits the old B73 inlet/discharge envelope but with a smaller footprint. Standard mounting, close coupled, direct back pull-out design eliminates alignment and calibration issues.

B73lean® IS LESS EXPENSIVE TO OPERATE

Smooth, resin-rich thermoset surfaces, elegantly simple design and fewer components make it far more efficient than the old pumps specified by your predecessors.

GENESYS® Wet End Cutaway

B73lean®

Ensures inlet and discharge ports to be interchangeable with existing metal and plastic ANSI pumps conforming to the ANSI/ASME B73.1 specification.

B73lean® provides the ability to close-couple to five different NEMA JM motor frames (143JM through 215JM NEMA frame motors). This benefit provides lower acquisition costs and reduces the overall footprint when comparing to long coupled / bearing frame pump and motor configurations.

SEAL FLUSH PORT

- Lubricates the mechanical seal
- Removes heat generated by the seal and motor shaft
- Extends the life of the seal
- Reduces maintenance cost
- Features two seal flush port configurations including plan 11, plan 13

IMPENATRA® II

- No metal in contact with process fluid
- Manufactured for sea water and chemical applications

THROUGH BOLT DESIGN • True back-end pullout • Ease of maintenance

PROPRIETARY BULK MOLDED VINYL ESTER COMPOUND

- Compression molded parts
- Superior resin rich surfaces
- Smooth hydraulic passages
- Promotes high pump efficiency
- Withstands the intensity of the toughest piping loads
- The thermoset formulation provides high temperature and chemical resistance in a wide array of applications

• Non metallic design

- Seal faces and elastomers are available in a wide range of materials
- Ensures compatibility for corrosion resistance.

SIMPLICITY OF DESIGN

• One casing o-ring for quick and easy assembly.

ENCLOSED IMPELLER

- Peak efficiency of 76%
- Internal hydraulic passages provide high efficiency performance

Mechanical Seal

Impenatra® II Sea

The Impenatra[®] II Seal is an innovative new approach to solve many shaft sealing problems. When used in the GENESYS[®] 3x2-6, it isolates all metallic parts from contact with the fluid. Alternately, corrosive chemicals require seals made of exotic alloys.

You can expect unprecedented corrosion resistance and protection from attack by contained fluid and surrounding environment. Easy to install and field adjustment not required. Offers great versatility at an excellent price. Reliability due to simplicity of design and quality components.

TECHNICAL DATA

Seal Type – stationary wave spring, reverse mount Maximum temperature 194 °F

MATERIALS OF CONSTRUCTION

O-rings and elastomers available in Buna, Viton®, EPDM, Kalrez® and Alfas® Seal case – injection molded polypropylene Seal face – carbon graphite resin, binderless graphite or silicon carbide Seal seat – silicon carbide

Seal Flushing Arrangements

The GENESYS® 3x2-6 model provides a seal flush port, also known as a waterwash, to keep the mechanical seal surfaces cool and clean. Seal flushing helps provide an optimal environment around the Impenatra® II seal faces. They are highly recommended for longevity of the seal and reducing maintenance costs.

The GENESYS® 3x2-6 internal seal flush port are offered in two common piping configurations:

PLAN 11

Seal flush from pump discharge port to internal flush port on pump bracket.

- Seal chamber heat removal.
- Increase seal chamber pressure and fluid vapor margin.
- Keeps seal surfaces clean in applications with fluids that crystallize

PLAN 13

Recirculation from seal chamber to pump suction through port.

- Seal chamber heat removal.
- Keeps seal surfaces clean in applications with fluids that crystallize

Enclosed impeller

Enclosed impeller design provides high efficiency performance.

- Ultrasonically welded impeller shroud and vane
- Motor shaft o-rings not required
- No balancing and shaft alignment required for impeller assembly

GENESYS® PLAN 11 Seal Flush Arrangement

GENESYS® PLAN 13 Seal Flush Arrangement

BMC vs. RTM for making pump parts

Making industrial parts from a non metallic material has had a very interesting history. One of the very first manufacturing processes to do that was called "compression molding." This process was developed in the early 1900's . It is a high-pressure molding technique used originally to mold phenolic compounds. RTM is relatively newer process that is done under lower pressures but uses newer thermoset materials, fillers and matrices to make more versatile products. BMC is the latest hybrid of both that takes the best of both worlds. BMC can produce even stronger, more cost-effective complex parts previously made only in high-end metallic foundries. There have been many reasons behind the innovations in non-metallic part manufacturing, but several are:

- The need to replace complex metal parts with a composite material to lower cost.
- The need to consider the environmental impact that metal foundries were contributing in their waste stream disposal, scrap.
- The need to find ways of making a higher quality product for better performance.

The table below basically shows how the RTM process compares to the BMC process using two criteria categories: Scalar and Qualitative. The scalar rankings show the part feature relative to the manufacturing process in very objective terms. The Qualitative rankings show part features that are more subjective in nature but still give a relative value comparison. BMC materials and processes are being improved all the time. What makes this most exciting is that it will allow manufacturers to consider replacing even more metallic components in their products with composite equivalents. Of course, in any fluid flow equipment, like pumps, this will invariably contribute to higher overall efficiencies of a complete assembly or system.

Criteria	Feature	ВМС	RTM
Scalar	Capital Production Tooling costs	10X	1X
	Production part cycle time	1X	10X
	Fully loaded cost of molding materials	1X	5X
Qualitative	Smooth surfaces for higher operational efficiencies	HIGH	MED
	Post molding machining operations required	LOW	MED
	Wall thicknesses required	HIGH	LOW

BMC MATERIALS HAVE OTHER PROPERTIES OF PARTICULAR VALUE TO THE PUMP INDUSTRY

- A smooth surface finish provides for better sealing and reduces friction losses resulting in higher efficiencies than competitors. Higher efficiencies result in lower total costs of ownership and maintenance.
- The complex geometries designed into the internal fluid passages, i.e. smooth curving surfaces, are essential for optimum hydraulic performance and are required to keep fluid turbulence to a minimum, resulting in even more efficiency gains.
- Because the design incorporates complex geometries, the pumps have a smaller footprint than "Armored" pumps requiring an external support structure for their internal non-metallic "lining." Thermoset materials of construction have an inherent advantage over thermoplastics for applications with higher temperature fluids and with more aggressive chemical formulations. Thermoset materials can match the quality of parts made in the investment cast process using high-end alloys.

GENESYS® 3X2-6 THERMOSETTING POLYMER

The thermoset transformation or curing process involves change from a liquid to a solid by a cross-linking process. This means that the molecular chains of the polymers are induced to link into a rigid product using chemical catalysts that make this linking go faster than it would over time. Thermoset materials are generally stronger than thermoplastic materials due to the number of three dimensional bonds that are created through cross-linking. This also makes them better suited to high-temperature applications. However, this "hardness" tends to make them more brittle and difficult to recycle.

SOME EXAMPLES OF THERMOSETS ARE:

- Polyester fiberglass systems
- Vulcanized rubber
- Bakelite, an electrical insulators and plasticware
- Duroplast, similar to Bakelite used for making car parts
- Urea-formaldehyde foam used in plywood
- Melamine resin used on worktop surfaces
- Epoxy resin polyimides used in printed circuit boards and in body parts of modern airplanes
- Cyanate esters or polycyanurates for electronics application

IMPENATRA® II

WHAT'S DIFFERENT ABOUT THE IMPENATRA® II?

- A proven, balanced design approach which eliminates hang up.
- Seal case is Injection molded polypropylene.
- All metal surfaces, springs and shafts are isolated from fluid contact.
- Easily handles a wide range of chemical solutions including most acids, bases and inorganics.
- Every seal is individually inspected to ensure consistent quality and is readily available.

The Impenatra® II Seal is an innovative new approach to solve many shaft sealing problems. When used in the GENESYS® 3x2-6, it isolates all metallic parts from contact with the fluid. Alternately, corrosive chemicals require seals made of exotic alloys.

You can expect excellent corrosion resistance and protection from attack by contained fluid and surrounding environment. Easy to install and field adjustment not required. Offers great versatility at an excellent price. Reliability due to simplicity of design and quality components.

WHAT THIS MEANS TO YOU

- Outstanding corrosion resistance protects from attack by contained fluid and from surrounding environment.
- Easy to install, field adjustment not required.
- Offers good versatility at an excellent price.
- Reliability, due to simplicity of design and quality components.

TECHNICAL DATA

Seal Type: Stationary wave spring, reverse mount Maximum temperature 194 $^{\circ}\text{F}$

MATERIALS OF CONSTRUCTION

- O-rings and elastomers available in Buna, Viton®, EPDM, Kalrez® and Alfas® a registered trademark of Asahi Glass Co., Ltd.
- Seal case injection molded polypropylene
- Seal face carbon graphite resin, binderless graphite or silicon carbide
- Seal seat silicon carbide

EXAMPLE CORROSION RESISTANCE

- Deionized Water
- Ferrous Chloride 100%
- Hydrochloric Acid 37%
- Hypo Acid Fixing Baths
- Nitric Acid 10%
- Phosphoric Acid
- Photographic Developers
- Plating Solutions
- Sodium Hydroxide
- Sodium Hypochlorite
- Sulfuric Acid (aerated)
- And much more...

IMPENATRA'II

Impenatra® II and Genesys® are registered trademarks of MDM Incorporated. Viton® and Kalrez® are registered trademarks of Dupont.

Noryl® is a registered trademark of SABIC. Alfas® is a registered trademark of Asahi Glass Co., Ltd.

